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Abstract —A quasi-homogeneous model for heat transport in packed beds with fluid flow (a so-called Λr(r)-model, explicitly
accounting for laterally uneven distributions of porosity, flow velocity and effective thermal conductivity) is successfully compared with
a comprehensive collection of experimental data from literature. Specifically, experiments with various bed geometries (slab, annular
channel, circular tube) and several different boundary conditions at the wall (constant temperature, constant heat flux, adiabatic) are
accurately described by the model without any adaption of its parameters. Furthermore, systematic comparison is conducted with
an αw-model (plug-flow combined with a wall heat transfer coefficient). The comparison reveals advantages of the Λr(r)-model in
predictive performance. These advantages, conceptual aspects, as well as better possibilities for considering temperature-dependent
properties and simulating complex processes like reaction and adsorption justify the recommendation of theΛr(r)-model for practical
use.  2000 Éditions scientifiques et médicales Elsevier SAS
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Nomenclature

cf specific heat capacity of the fluid . . . . J·kg−1·K−1

B width of a rectangular channel . . . . . m
D tube diameter . . . . . . . . . . . . . . . m
dp particle diameter . . . . . . . . . . . . . m
E error index after equation (2)
F error index after equation (6)
hov overall heat transfer coefficient . . . . . W·m−2·K−1

K1 slope parameter
K2 damping parameter
L length of the packed bed . . . . . . . . . m
m number of measured points per experi-

ment . . . . . . . . . . . . . . . . . . . .
Nuov overall Nusselt number= hovdp/λf . .
n number of experiments per data group
Pe0 molecular Péclet number= ū0dpρfcf/λf
Pr Prandtl number
p pressure . . . . . . . . . . . . . . . . . . Pa
R tube radius . . . . . . . . . . . . . . . . m

* Correspondence and reprints.
evangelos.tsotsas@vst.uni-magdeburg.de

Re0 Reynolds number= ρf ū0dp/ηf . . . . .
r radial coordinate . . . . . . . . . . . . . m
T temperature . . . . . . . . . . . . . . . . K or◦C
uc superficial velocity in the core of the bed m·s−1

u0 local superficial velocity . . . . . . . . . m·s−1

ū0 average superficial velocity . . . . . . . m·s−1

x lateral coordinate . . . . . . . . . . . . . m
z axial coordinate . . . . . . . . . . . . . m

Greek symbols

αw wall heat transfer coefficient . . . . . . . W·m−2·K−1

ηeff effective dynamic viscosity . . . . . . . Pa·s
ηf dynamic viscosity of the fluid . . . . . . Pa·s
Λax effective axial thermal conductivity . . . W·m−1·K−1

Λr effective radial thermal conductivity . . W·m−1·K−1

Λx effective lateral thermal conductivity . . W·m−1·K−1

λf thermal conductivity of the fluid . . . . W·m−1·K−1

λbed effective thermal conductivity without
fluid flow . . . . . . . . . . . . . . . . . W·m−1·K−1

ρf density of the fluid . . . . . . . . . . . . kg·m−3

ψ local bed porosity
ψ∞ bed porosity of the infinitely extended bed
ψ̄ average bed porosity
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Subscripts

ax axial
bed of the bed, without fluid flow
c core (at the core of the packed bed)
cyl cylinder
eff effective
exp experimental
f fluid
in inlet
out outlet
ov overall
p particle
r radial
w wall
∞ infinitely extended bed

1. INTRODUCTION

Heat transport in packed beds with fluid flow is of con-
siderable importance for processes like heterogeneous
catalytic reaction, adsorption, chromatography, heat ex-
change or storage in chemical, pharmaceutical, environ-
mental, energy and other industries. Temperature pro-
files are commonly calculated by a quasi-homogeneous
model which assumes uniformity of porosity and fluid
velocity over the cross section of the bed (plug flow),
uses an effective, spatially constant lateral (for a tube:
radial) thermal conductivity and introduces a heat trans-
fer coefficient at the wall,αw. The latter is defined by
means of a boundary condition of the third kind (temper-
ature jump) at the wall of the bed. This standard model,
which has been investigated or applied in hundreds of pa-
pers and is included in practically every text- or hand-
book, see, e.g., [1–3], will be called in the following the
αw-model.

On the other hand, it has been recognized that the uni-
formity of bed structure is considerably disturbed by the
rigid wall (Roblee et al. [4], among many others after
them), giving rise to maldistribution of fluid flow (chan-
neling, early observations by Schwartz and Smith [5]). It
is reasonable to explicitly account for these effects in a—
still quasi-homogeneous—model and to regard, by anal-
ogy, the effective lateral thermal conductivity as a func-
tion of the distance from the wall. A model of this kind
is called, with reference to the case of a packed circu-
lar tube, aΛr(r)-model or wall heat conduction model.
Though early versions of theΛr(r)-model were put for-
ward by Smith and coworkers (e.g., [6]), enhanced de-
velopment of the—computationally demanding—model
took place in the eighties [7, 8], accompanied by consid-

erable progress in better understanding and calculating
packed beds reactors ([9, 10], among others).

On this basis, Winterberg et al. [11] have recently im-
plemented an up-to-date version of theΛr(r)-model and
derived all coefficients involved in the calculations of the
profile of effective thermal conductivity by comparison
with experimental data from literature. This reevaluation
reveals several positive features of the wall heat conduc-
tion approach:

• Either constants—partly theoretically derivable—or
very simple correlations are obtained for all model para-
meters involved in the calculation of the effective lateral
thermal conductivity profile. Specifically, no dependence
on the quotient between lateral bed dimension and par-
ticle diameter occurs. In this context, it is important to
notice that such dependences are typical for the parame-
ters of theαw-model (see, e.g., [12]).

• The real boundary condition is applied at the wall of
the bed, avoiding, thus, the introduction of an artificial
boundary condition of the third kind and of a wall heat
transfer coefficient,αw, which is especially at small
Reynolds numbers difficult to justify and correlate [13].

• The same model and the same set of coefficients
can be successfully used without and with chemical
reaction [14].

However, several restrictions are included in the work
of Winterberg et al. [11] concerning the fluid (gas), the
shape of the particles (spherical), the shape of the con-
tainer of the bed (circular tube) and the thermal boundary
condition at the wall (constant temperature). The last two
restrictions define the major type of experiment that has
been evaluated, namely heat transfer between the fluid
entering at some prescribed temperature a packed, circu-
lar tube and the wall of this tube which is kept isother-
mal at some other temperature (Nusselt–Graetz experi-
ment for a packed tube).

With the above-mentioned investigation as its starting
point, the present paper follows a twofold objective:

• Find out, whether experimental results other than those
used for its development can be accurately predicted by
theΛr(r)-model of Winterberg et al. [11], or not. Specif-
ically, data for bed geometries other than cylindrical and
boundary conditions other than the constant wall temper-
ature condition shall be analyzed. In this sense, the ob-
jective is to prove the invariability of model parameters
upon changes of bed geometry and/or thermal boundary
condition.

• Comprehensively compare theΛr(r)-model with the
αw-model in terms of their predictive performances.
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The restrictions to nearly spherical particles will re-
main, along with the restriction to gases (the latter with
the exception for a few experimental runs with water).
Though brief reference to chemical reactors will be given,
data with chemical reactions will not be treated in the
present paper.

2. DATA, MODELS AND METHODS

Primary classification of experimental data available
from literature which will be evaluated in the present
work is conducted in terms of bed geometry, distinguish-
ing between slab, annular channel and circular tube (data
groups D1, D2, D3, respectively). Further characteriza-
tion is based on the thermal boundary condition at the
wall or walls of the bed (constant temperature/BC of the
first kind, constant heat flux/BC of the second kind, zero
heat flux/adiabatic). In this way, a total of seven sub-
groups is defined as summarized intable I. One subgroup
(D3.1, circular packed tube with constant wall temper-
ature) has already been used by Winterberg et al. [11]
in the development of the presentΛr(r)-model and is
included in the table for the sake of completeness. All
other six subgroups have never before been confronted
with this model and are, thus, significant for the intended
check of its validity and predictability.

The three geometric configurations under investiga-
tion are depicted schematically infigure 1, along with
pertinent coordinates and dimensions. Flow is always in
the direction of thez-axis. Equations of theΛr(r)-model
after Winterberg et al. [11] are summarized in the Ap-
pendix for every geometric configuration. Referring to
the circular tube, remember that the radial porosity pro-
file,ψ(r), is calculated for nearly spherical particles after
Giese [15], Giese et al. [16], equation (A.2). The respec-
tive velocity profile,u0(r), is obtained by numerical solu-
tion of the extended Brinkman equation (equation (A.3)
with the effective viscosity,ηeff, after the same authors,
equation (A.4)). For the effective axial thermal conduc-
tivity the additive equation (A.6) is used, as proposed
by many authors, e.g., Tsotsas [3]. Here, as well as in
equation (A.8), the quiescent part, i.e. the effective ther-
mal conductivity of the packed bed without fluid flow,
λbed, is calculated after Zehner and Schlünder [17] as a
function of the local porosity. Of distinctive importance
for the model is the part of the effective radial thermal
conductivityΛr(r), which depends on fluid flow, i.e. the
second right-hand term of equation (A.8). This is pro-
portional to the superficial fluid velocity in the core of
the bed (atr = 0), uc, compare also with [18]. Propor-

tionality is specified by the so-called slope parameter,
K1, a constant after equation (A.10). Finally, the damp-
ing parameterK2 (equations (A.9), (A.11)) determines
in multiples of the particle diameterdp the point, be-
yond whichΛr(r) begins to decline towards the wall. No-
tice that the argument of the exponential function, which
was(−Re0/70) in [11], has been replaced by(−Pe0/50)
in equation (A.11). Both expressions are identical for
Pr= 0.71 (ambient air as the fluid). The modification has
to do with the use of some data with water in the present
work, and is of no significance for the evaluation of data
with gases by Winterberg et al. [11]. This aspect will be
further discussed in connection with data group D1. After
equation (A.11) the zone of inhibited heat transport is re-
duced to a small region of 0.44dp near the wall for high
Péclet numbers, at low Péclet numbers it expands con-
siderably. However, in the region of low Péclet numbers
both the convective part of the effective thermal conduc-
tivity Λr(r) and the model sensitivity uponK2 are rela-
tively low. More details on theΛr(r)-model can be ob-
tained from the original work of Winterberg et al. [11],
including exemplary velocity and thermal conductivity
profiles, aspects of physical interpretation and additional
background literature.

Transcription to Cartesian coordinates of the slab is
straightforward. In this case, the porosity, velocity and
thermal conductivity functions are symmetrical in respect
to the plane withx = B/2. Notice that the dependence of
the physical properties entering the extended Brinkman
equation on temperature is ignored, enabling its separate
solution. The general term of aΛr(r)-model is used in
spite of the replacement of the radial coordinater by x.
For the annular duct, porosity and effective radial ther-
mal conductivity (equations (A.12), (A.13)) are treated
symmetrically tor = (R + rcyl)/2, i.e. the influence of
different curvatures of the two cylindrical walls is ne-
glected (see alsofigure 1). The core superficial velocity,
uc, is also calculated atr = (R+rcyl)/2. For every geom-
etry, numerical solutions of the energy balances (equa-
tion (A.1), (A.14), respectively) requires the specifica-
tion of the thermal boundary conditions at the inlet, at
the outlet and at the wall. Boundary conditions used in
the present work are recapitulated intable II, additional
explanations on individual subgroups (compare withta-
ble I) will be given in the course of the presentation of
the respective results.

A great number of different versions of theαw-model
exist in literature. The present authors regard the model
version of Martin and Nilles [19] to be the most effi-
cient, because of the large number and wide range of
underlying experimental results (the main part of data
of subgroup D3.2,table I), its documented satisfactory
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TABLE I
Summary of the experiments reevaluated in the present work. NE: number of reevaluated experiments, NP: number of

measured points.

Geometry Experimental Authors Experimental parameters Numbers of Error
boundary experiments
conditions

D1 slab Tw,1= const Schröder et al. [21] F: air, water NE: 8 E(Λr (r))= 3.35%
Tw,2= const Bey and Eigenberger [22] P: glass NP: 108 E(αw)= 3.28%

dp= 2.0–10.0 mm
B/dp= 6.1–26.0
Re0= 97–481

D2.1 annular Tcyl = const Yagi and Kunii [23] F: air NE: 3 E(Λr (r))= 3.06%
channel Tw = const Baddour and Yoon [24] P: glass, ceramic NP: 33 E(αw)= 3.46%

dp= 0.9–7.9 mm
(D − dcyl)/dp= 16.0–51.1
Re0= 32–705

D2.2 annular Tcyl = const Gabor [25] F: air NE: 95 F(Λr(r))= 25.27%
channel q̇w = 0 Botterill and Denloye [26] P: sand, copper, synthetics NP: – F(αw)= 27.95%

dp= 0.6–3.2 mm
(D − dcyl)/dp= 22.8–101.3
Re0= 11–540

D2.3 annular q̇cyl = const Sordon [27] F: argon NE: 2 E(Λr (r))= 2.53%
channel q̇w = 0 P: ceramic NP: 72 E(αw)= 3.07%

dp= 4.0 mm
(D − dcyl)/dp= 21.5
Re0= 85

D2.4 annular q̇cyl = const Sordon [27] F: argon NE: 4 E(Λr (r))= 2.41%
channel Tw = const P: ceramic NP: 144 E(αw)= 4.27%

dp= 4.0 mm
(D − dcyl)/dp= 21.5
Re0= 67–155

D3.1 circular Tw = const see [11] F: air, N2, NH3 NE: 49 E(Λr (r))= 4.75%
tube P: glass, ceramic, synthetics NP: 447 E(αw)= 6.61%

dp= 2.0–12.7 mm
D/dp= 4.9–33.3
Re0= 18–1818

D3.2 circular q̇w = const Seidel [29] F: air NE: 66 E(Λr (r))= 8.24%
tube Quinton and Storrow [28] P: glass, ceramic NP: 1 241 E(αw)= 9.38%

Martin and Nilles [19] dp= 1.1–20.0 mm
D/dp= 4.7–51.0
Re0= 1.5–1396

accuracy and actual recommendations for practical ap-
plication [3]. Therefore, this version will be used for
comparison with theΛr(r)-model. Following Martin and
Nilles [19], their own correlation is applied for the wall
heat transfer coefficientαw (seetable II for the respective

boundary conditions of the third kind), while the, now
spatially constant, effective lateral thermal conductivity
Λr is calculated after Bauer and Schlünder [20]. Axial
dispersion of heat is accounted for by analogy to equa-
tion (A.6), quiescent thermal conductivity is calculated
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Figure 1. Geometric configurations analyzed in the present work with respective dimensions and coordinates.

after Zehner and Schlünder [17]. Further equations are
not necessary, because both bed porosity and flow veloc-
ity are set to constant values in theαw-model (plug flow
assumption withψ̄ andū0).

More difficult is the definition of a quantitative index
for the discrepancy between observed and calculated pro-
files, and for the comparison of predictive performance
of the two models. Winterberg et al. [11] proposed to this
purpose

χ2= 1

m

m∑
i=1

(
Texp,i − Ti
Texp,i

)2

(1)

i.e. the sum of squared differences between calculated,
Ti , and measured,Texp,i , temperatures, related to the
latter and to the number of measured points of one
temperature profile,m. However, this definition has
the disadvantage of dependence on the average level
of absolute temperature, and is implicit in respect of
approximate average deviation in centigrades. For this
reason, another index is used in the present work, namely
the average error

E = 1

m

m∑
i=1

∣∣∣∣Texp,i − Ti
1T

∣∣∣∣ (2)

Linear definition and the introduction of1T as a tem-
perature difference characteristic of the experiment un-
der consideration, typically a maximal temperature dif-
ference, are a choice for simplicity of interpretation. For

instance,1T is the difference between wall and fluid
inlet temperature in an experiment of subgroup D3.1.
With 1T = 100 K, E = 0.02 implies an average tem-
perature difference between calculation and experiment
of 2 K. Individual definitions of1T will be given for
every subgroup of data, with the exception of subgroup
D2.2, whose different treatment will be explained later
on. SinceE after equation (2) refers to one certain tem-
perature profile, the average

E = 1

n

n∑
i=1

Ei (3)

is used in order to express the overall performance for
one experimental subgroup. Here,n is the total number
of runs in the subgroup, identical to the number of
reevaluated experiments, NE, aftertable I.

It should be borne in mind that limits are set to the
comparability between different subgroups (table I), or
even between different experiments in one and the same
subgroup, on the basis of an error index likeE orE. Fur-
thermore, apart from equations (2) and (3) many other
definitions of an error index are possible (e.g., defini-
tions weighing by local resolution or flow velocity), each
with specific advantages. Preliminary investigations have
shown that it is possible to moderately shift values of the
error index for different subgroups and/or models rela-
tively to each other by changing its definition. However,
such variations are not significant at the level of overall
comparison between theΛr(r)- and theαw-model.

560



Modelling of heat transport in beds packed with spherical particles

TABLE II
Summary of the boundary conditions (BC) used to solve the model equations of the Λr(r)- and the

αw-model.

BC at the inlet/outlet BC at the walls,Λr(r)-model BC at the walls,αw-model

D1 z= 0: T = T in

z= L:
∂T

∂z
= 0

x = 0: T = Tw,1

x = B: T = Tw,2

x = 0: Λx
∂T

∂x
= αw(T − Tw,1)

x = B: −Λx ∂T
∂x
= αw(T − Tw,2)

D2.1 z= 0: T = T in or

T = Tin(r)

z= L:
∂T

∂z
= 0

r = rcyl: T = Tcyl

r =R: T = Tw
r = rcyl: Λr

∂T

∂r
= αw(T − Tcyl)

r =R: −Λr ∂T
∂r
= αw(T − Tw)

D2.2 z= 0: T = T in

z= L:
∂T

∂z
= 0

r = rcyl: T = Tcyl

r =R:
∂T

∂r
= 0

r = rcyl: Λr
∂T

∂r
= αw(T − Tcyl)

r =R:
∂T

∂r
= 0

D2.3 z= 0: T = T in

z= L:
∂T

∂z
= 0

r = rcyl: T = Tcyl(z)

r =R:
∂T

∂r
= 0

r = rcyl: Λr
∂T

∂r
= αw(T − Tcyl(z))

r =R:
∂T

∂r
= 0

D2.4 z= 0: T = T in

z= L:
∂T

∂z
= 0

r = rcyl: T = Tcyl(z)

r =R: T = Tw

r = rcyl: Λr
∂T

∂r
= αw(T − Tcyl(z))

r =R: −Λr ∂T
∂r
= αw(T − Tw)

D3.1 z= 0: T = T in or

T = Tin(r)

z= L:
∂T

∂z
= 0

r = 0:
∂T

∂r
= 0

r =R: T = Tw

r = 0:
∂T

∂r
= 0

r =R: −Λr ∂T
∂r
= αw(T − Tw)

D3.2 z= 0: T = T in or

T = Tin(r)

z= L:
∂T

∂z
= 0

r = 0:
∂T

∂r
= 0

r =R: T = Tw(z)
r = 0:

∂T

∂r
= 0

r =R: −Λr ∂T
∂r
= αw(T − Tw(z))

3. EVALUATION FOR THE SLAB:
DATA GROUP D1

The first type of reexamined measurements are experi-
ments of heat transfer between two parallel plates, heated
or cooled at constant temperatures,Tw,1 andTw,2, respec-
tively. The gap is packed with particles, flow is parallel to
the plates. The side walls of the arrangement are insu-
lated, so that the two-dimensional geometry of an infinite
slab (figure 1, group D1 intable I) may be assumed. The
test section is sufficiently long for transforming any inlet
fluid temperature distribution into a fully developed lat-
eral temperature profile, which does not depend any more

on the axial coordinate and is measured atz= Lwithin or
immediately after the packing. Experiments of this kind
have been performed by Schröder et al. [21] and by Bey
and Eigenberger [22]. Schröder et al. worked with water,
Bey and Eigenberger used air as the fluid. All packings
consisted of monodispersed glass spheres. The dimen-
sionless widthB/dp ranged between 6.1 and 26.0, the
Reynolds numberRe0 varied from 97 to 481.

While in theΛr(r)-model the real boundary condi-
tion of the first kind (Tw = const) is used at the heated
or cooled plate, artificial wall boundary conditions of the
third kind are formulated for theαw-model, seetable II.
In both works reevaluated here, the authors operate with
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Figure 2. Measured and calculated temperature profiles in a
packed slab (data group D1). Experimental data after Bey and
Eigenberger [22], fluid: air, solid: glass, B/dp= 6.1, Re0 = 481;
E(Λ(r))= 3.24 %, E(αw)= 3.61 %.

constant inlet temperature, so that the boundary condi-
tion atz= 0 is set by respective values from the original
papers. Consequently, the complete evolution of temper-
ature field between inlet and the level of measurement is
calculated by the models. According to the usual prac-
tice (see, e.g., [3]) flat profiles are assumed at the outlet
for this as well as for all other reevaluated experiments
(table II). The temperature difference involved in the de-
finition of the error indexE (equation (2)) is set equal
to 1T = Tw,1 − Tw,2, i.e. to the temperature difference
between the plates.

In figure 2 results of computations with the two dif-
ferent models for an experiment of Bey and Eigen-
berger [22] are depicted exemplarily. It can be seen that
the deviation between the two different model predic-
tions is relatively small in the core of the packed bed,
where most measured points lie. Similar values of the
effective lateral thermal conductivityΛx are the reason
for this behaviour. WhileΛx/λf = 41.1 after Bauer and
Schlünder [20] is used in theαw-model over the whole
channel cross section, theΛr(r)-model predicts a value
Λx/λf = 45.5 in the centre of the slab. The impact of
different boundary conditions is obvious at the channel
walls. TheΛr(r)-model operates with the real wall tem-
peratures, hereTw,1 = 85◦C andTw,2 = 35◦C, respec-
tively, while theαw-model predicts temperature jumps.
However, the overall influence of the boundary condi-
tion is not very large, leading to similar error indices,
E(αw)= 3.61 % andE(Λr(r))= 3.24 %. An orientation
mark for this predictive performance can be derived from
the linear profile connecting the above mentioned wall
temperatures. This profile would be valid in the absence
of any maldistribution or wall resistance irrespectively

Figure 3. Measured and calculated temperature profiles in a
packed slab (data group D1). Experimental data after Schröder
et al. [21], fluid: water, solid: glass, B/dp= 26.0, Re0 = 405;
E(Λ(r))= 1.90 %, E(αw)= 1.21 %.

of the value of the effective lateral thermal conductiv-
ity, though heat flux between the plates would be propor-
tional to the latter. For this limiting case a significantly,
but not dramatically, higher error index ofE = 7.47 % is
obtained.

A similar behaviour at even better accuracy (E(αw)=
1.21 % andE(Λr(r))= 1.90 %) is obtained for the tem-
perature profile from [21] that is presented infigure 3.
Here, thermally fully developed conditions have been ap-
proximated but not completely reached, as the slight cur-
vature of experimental and calculated profiles in the mid-
dle of the bed indicates. The data of Schröder et al. [21]
are the only ones with a liquid (water) in the present
investigation. Their reasonable and more accurate treat-
ment by theΛr(r)-model led to the slight modification
of the damping parameterK2 which has been described
in the previous section. As already pointed out, this mod-
ification is of no significance for the simulation of data
with gases under usual test conditions. Certainly, more
data with liquids are necessary for a comprehensive and
final recommendation.

Similar results are found when the computations are
extended to other experiments of the data group D1. In
figure 4the error indicesE(Λr(r)) of predictions by the
Λr(r)-model are plotted over the error indicesE(αw)

of the αw-approach. If the two models described the
measured values with the same accuracy, all points would
lie on a straight line with the slope of one. This does not
happen for every individual point, but is approximately
true on the average, as the indicesE(Λr(r)) = 3.35 %
andE(αw) = 3.28 % after equation (3) show (table I).
In spite of the value of data group D1, it is rather risky
to base packed bed modelling only on it. This can be
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Figure 4. Comparison between the Λr(r)-model after Winter-
berg et al. [11] and the αw-model of Martin and Nilles [19]
with respect to the predictive performance for the slab geome-
try (data group D1).

underlined by comparison of early efforts towards an
Λr(r)-model (e.g., [7], referring only to the experiments
by Schröder et al. [21]) with [11] as well as with the
present work.

4. EVALUATION FOR THE ANNULAR
CHANNEL: DATA GROUP D2

Data group D2 refers to the annular channel geometry
(figure 1), realized by placing a heating or cooling
cylinder in the centre of a circular tube and filling the gap
with particles. By heating or cooling with fluid media,
electrical heating or insulation various combinations
of wall boundary conditions are possible and make
distinction between four subgroups necessary (table I).
Wall boundary conditions entering calculation with the
Λr(r)- or the αw-model are recapitulated intable II,
along with inlet and outlet boundary conditions.

Subgroup D2.1 is very similar to data group D1,
because the walls of the channel are kept isothermal at
different temperatures. The respective difference,1T =
Tw − Tcyl, is, again, used as the characteristic difference
in the definition of the error index after equation (2).
Experiments have been reported by Yagi and Kunii [23]
and by Baddour and Yoon [24]. In order to obtain
thermally fully developed conditions, Yagi and Kunii
controlled—and measured—the inlet temperature profile
to the vicinity of what they have expected at the outlet.
Baddour and Yoon used isothermal inflow (table II) and
a column sufficiently long for suppressing the influence
of inlet conditions. Packings consisted of glass or ceramic

Figure 5. Measured and calculated temperature profiles in an
annular channel (data subgroup D2.1). Experimental data after
Yagi and Kunii [23], fluid: air, solid: glass, (D− dcyl)/dp= 17.5,
Re0= 131; E(Λ(r))= 2.85 %, E(αw)= 3.73 %.

spheres. The ratio between the total width of the annular
channel and the particle diameter(D − dcyl)/dp ranged
between 16.0 and 51.1, the Reynolds number between
32 and 705 (seetable I). Figure 5 shows exemplarily
one measured temperature profile from [23]. The inner
cylinder is cooled with water, the outer tube wall is
heated with steam. Prediction by theαw-model is good,
prediction by theΛr(r)-model is better (E(Λr(r)) =
2.85 %, E(αw) = 3.73 %). That is also true for the
other experiments of subgroup D2.1, leading to moderate
advantages of theΛr(r)-model in terms of the average
error indexE (seetable I).

Experimental data of Gabor [25] and Botterill and
Denloye [26] from an annular channel with constant
temperature at the inner and insulation of the outer
cylinder constitute subgroup D2.2 (tables I, II ). The inner
cylinder was an immersed electrical heater, as typically
used in experiments with fluidized beds, with its surface
temperature kept constant by control and uniform by
the high thermal conductivity of its material. From this
temperature, and from the measured mean inlet and outlet
temperatures, the authors calculate overall heat transfer
coefficients,hov, and overall Nusselt numbers,Nuov, and
report them without the underlying temperature values.
Packings of sand, copper and synthetics have been used.
The ratio(D − dcyl)/dp varied from 22.8 to 101.3, the
Reynolds number from 11 to 540.

In reevaluation, the radial outlet temperature profile,
Tout(r), is calculated, and the mean outlet temperature
T out is derived by accounting for cylindrical geometry
in theαw-model. For theΛr(r)-model,T out is a caloric
average (mixing cup temperature). Then, the overall heat
transfer coefficient and the respective Nusselt number are
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Figure 6. Measured and calculated overall Nusselt numbers
from experiments in an annular channel (data subgroup
D2.2). Experimental data after Gabor [25] and Botterill and
Denloye [26], fluid: air, (D−dcyl)/dp= 22.8–51.1, Re0= 32–540.

obtained by the same formulae as in the original papers,
namely

hov=
ρfcf ū0(R

2− r2
cyl)

2rcylL
ln
Tw − T in

Tw − T out
(4)

Nuov= hovdp

λf
(5)

Comparison is conducted at the level of overall Nusselt
numbers infigure 6. To cope with this, we deviate from
equations (2), (3) and define the mean error as

F = 1

n

n∑
i=1

∣∣∣∣Nuov,exp,i −Nuov,calc,i

Nuov,exp,i

∣∣∣∣ (6)

leading to values of ofF = 25.27 % for theΛr(r)- and
F = 27.95 % for theαw-model (table I). These numbers
are relatively large, mainly because of the definition (see
previous discussion about restrictions in direct compara-
bility of different error indices). Additional aspects are
difficulties with the accurate determination of mean out-
let temperature and the use of rather irregularly shaped
and polydispersed particles by the original investigators.
In spite of all this, agreement between calculation and
measurement is satisfactory, with slight advantages of the
Λr(r)-model.

The next sets of experiments reevaluated for the
annular channel have been reported by Sordon [27]. He
placed an electrically heated cylinder in the centre of a
packed tube and operated with two different boundary

Figure 7. Measured and calculated temperature profiles in an
annular channel (data subgroup D2.3). Experimental data after
Sordon [27], fluid: argon, solid: alumina, (D− dcyl)/dp= 21.5,
Re0 = 85.2; z/L = 0.37: E(Λ(r)) = 2.15 %, E(αw) = 2.78 %,
z/L= 0.86: E(Λ(r))= 2.90 %, E(αw)= 3.36 %.

conditions at the outer tube wall. On the one hand, he
insulated the tube wall, realizing the boundary condition
of zero heat flux at the wall (subgroup D2.3). On the
other hand, he cooled the tube with water at constant
temperature (subgroup D2.4, seetable I). In contrast to
the experiments of subgroup D2.2, no uniform cylinder
temperature has been realized by Sordon. However, the
respective axial temperature profile,Tcyl(z), has been
measured and reported, and is used in the boundary
condition atr = rcyl (table II) (operating with values of
heat flux would require modelling of the heating element
and be indirect and less accurate). Sordon used argon
as the fluid and ceramic packing material. The ratio of
total width of channel cross section to particle diameter
was constant at(D − dcyl)/dp= 21.5, Reynolds number
varied between 67 and 155.

Measured temperature profiles at two different bed
lengths are shown infigure 7 for an experiment with
insulated tube wall (subgroup D2.3). The profiles indi-
cate thermally fargoing developed conditions. The pre-
dictive performance of theΛr(r)-model is, again, excel-
lent. Similar results are delivered by theαw-model at the
insulated wall (here the boundary condition is the same,
seetable II). At the heated wall, the temperature jump
predicted by theαw-model amounts to over 80 K, cre-
ating potentially significant deviations from theΛr(r)-
approach. In the definition of error indices for the data of
Sordon after equation (2) the maximal temperature dif-
ference between heated wall and bed at one and the same
axial level has been used as1T . Respective results are
listed intable I.

Error indices of theΛr(r)-model are compared with
respective values of theαw-model for the entire data
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Figure 8. Comparison between the Λr(r)-model after Winter-
berg et al. [11] and the αw-model of Martin and Nilles [19] with
respect to the predictive performance for experiments in annu-
lar channels (data group D2).

group D2 with the exception of subgroup D2.2 infigure 8,
which is analogous tofigure 4. Significant advantages of
the wall heat conduction approach are observed at an, in
general, very satisfactory level of predictive accuracy.

5. EVALUATION FOR THE CIRCULAR
TUBE: DATA GROUP D3

The third group of reevaluated data refers to the clas-
sical and elementarily important geometry of the circular
tube. Subgroup D3.1 contains the same data from exper-
iments with packed tubes cooled or heated at constant
wall temperature which have been used by Winterberg et
al. [11] for the development of the presentΛr(r)-model.
With reference totable I, table IIand to the original work,
we will restrict the present discussion to the evaluation of
the error indexE after equation (2), with1T equal to
the temperature difference between wall and inlet fluid,
which is new. Respective results for theΛr(r)- and for
theαw-model are recapitulated infigure 9, averages are
given in table I. Figure 9can be directly compared with
figure 11 of the original paper [11], where the same evalu-
ation has been conducted in terms of theχ2-factor (equa-
tion (1)). The comparison reveals that numerical values
depend, as already pointed out, on the specific definition
of the error index and that a certain shift of individual
points can appear. However, the general trend remains the
same, indicating the significance of better overall predic-
tive performance of theΛr(r)-model according to both
figures, seefigure 9.

Figure 9. Comparison between the Λr(r)-model after Winter-
berg et al. [11] and the αw-model of Martin and Nilles [19]
with respect to the predictive performance for experiments in
packed circular tubes with constant wall temperature (data sub-
group D3.1); for references see Winterberg et al. [11].

Changing the boundary condition at the wall of the
circular tube from constant temperature to constant heat
flux, subgroup D3.2 is obtained. This large subgroup con-
tains the data of Quinton and Storrow [28], Seidel [29],
and Martin and Nilles [19],table I. All authors used
air as the fluid. The packings consisted of monodis-
persed spherical particles of low thermal conductivity.
The diameter ratioD/dp ranged between 4.7 and 51.0,
the Reynolds number between 1.5 and 1 396. Quinton
and Storrow as well as Martin and Nilles heated the
wall electrically, while Seidel used cooling air and ap-
proximated the boundary condition of the second kind
(q̇w = const) by keeping the temperature difference be-
tween wall and the bulk of the bed as constant as possi-
ble. All authors measured and reported the wall temper-
ature profileTw(z). As already practiced for subgroups
D2.3, D2.4, these experimental profiles are inserted into
the boundary conditions atr = R for model resolution,
see table II. Quinton and Storrow measured only the
mean inlet temperature, therefore the boundary condition
T = T in = const is used atz = 0 for the reevaluation.
The other authors report measured radial inlet tempera-
ture profiles. Such a radial profile is approximated with
a fit function, which builds the boundary condition at
the inlet (T = Tin(r), table II). The reference tempera-
ture difference1T in equation (2) is equal to the maxi-
mal temperature difference between wall and core of the
bed (r = 0) atz= const (compare, again, with subgroups
D2.3, D2.4).

It is important to notice that theαw-model which is
used in the present work has been developed on the ba-
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Figure 10. Measured and calculated temperature profiles in a
packed circular tube with constant heat flux at the wall (data
subgroup D3.2). Experimental data after Nilles and Martin [19],
fluid: air, solid: ceramic, D/dp= 5.1, Re0 = 159; E(Λ(r)) =
9.51 %, E(αw)= 12.72 %.

Figure 11. Measured and calculated temperature profiles in a
packed circular tube with constant heat flux at the wall (data
subgroup D3.2). Experimental data after Nilles and Martin [19],
fluid: air, solid: ceramic, D/dp= 5.1, Re0 = 1 128; E(Λ(r)) =
6.15 %, E(αw)= 4.75 %.

sis of the experiments of Martin and Nilles [19], which,
on their turn, build the overwhelming majority in the
subgroup D3.2. Consequently, the agreement between
subgroup D3.2 data and theαw-model is expected to
be good, while the subgroup constitutes a real test for
theΛr(r)-model. Examples of success in absolving this
test are presented infigures 10and11, which are based
on experimental data of Martin and Nilles [19] for two
different Reynolds numbers. TheΛr(r)-model predicts
the data with similar accuracy as theαw-model, while
the deviation between the two approaches is maximal

Figure 12. Comparison between the Λr(r)-model after Winter-
berg et al. [11] and the αw-model of Martin and Nilles [19]
with respect to the predictive performance for experiments in
packed circular tubes with constant heat flux at the wall (data
subgroup D3.2).

in the immediate vicinity of the wall. The tempera-
ture jump predicted by theαw-model increases with in-
creasing Reynolds number. In the total, the average er-
ror of theΛr(r)-model in respect to subgroup D3.2 is
with E(Λr(r)) = 8.24 % even smaller than that of the
αw-model withE(αw)= 9.38 % (table I). As the plot of
figure 12shows, the advantage of the wall heat conduc-
tion model originates from the region of relatively large
error indices, roughly corresponding to the region of rel-
atively low Reynolds numbers. That experimental scatter
is inherently contained in the definition of the error in-
dex of equation (2), andE will not vanish completely for
any model, can be clearly seen by the data offigures 10
and11. Notice that pairs of points atr/R = const result
from the measurement of temperatures at antidiametric
positions of the bed by Martin and Nilles [19].

6. DISCUSSION

In the previous sections, theΛr(r)-model developed
by Winterberg et al. [11] has been applied to experiments
taken from literature which differ from the data the
model has been fitted on in bed geometry and/or in
the experimental boundary condition. In all cases, the
prediction of the experimental data is satisfactory, in
many cases even excellent. This means that the model
may be used for all kinds of packed beds (packed
circular tubes, rectangular channels and annular columns)
and for all thermal boundary conditions. Its parameters
remain invariant. In the total, the data base of the present
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work is very comprehensive: 227 experiments with 2 045
measured temperatures covering Reynolds numbers,Re0,
from 1.5 to 1 818, average particles diameters,dp, from
0.6 mm to 20 mm, and quotients between lateral bed
dimension and particle diameter from 4.7 to 101.3 have
been reevaluated.

Systematic comparison with theαw-model reveals that
the Λr(r)-model can describe the data almost equally
well for one and more accurately for six of seven data
subgroups considered in the present work (table I). Since
the overall predictive performance of theαw-model has
also been found to be good, this is improvement from
an already high level. To refrain from it may have
been reasonable some years before, due to the relatively
difficult numerical resolution of theΛr(r)-model; with
today’s hard- and software it is not. Furthermore, apart
from the improved predictive accuracy, three additional
arguments speak for the wall heat conduction concept:

• The Λr(r)-model has the conceptual advantage of
putting complexity where it belongs (into the fundamen-
tal model equations), and keeping model parameters sim-
ple and coherent (see [11] as well as Section 1).

• In spite of overall similarity between the predictions
of the two models, considerable temperature differences
may occur locally, i.e. at the wall. Nonlinear phenomena
in the bed can amplify this difference and magnify its
impact, not only locally, but also in the total. Strong
indication that this can be the case in packed beds
with exothermic chemical reaction has been provided by
Vortmeyer and Haidegger [10] and, more recently, by
Hein [30].

• In contrast to theαw-model, the potential of the
Λr(r)-approach has not been exhausted in the present
application. One possible extension is to account for the
interrelation between temperature and flow field which
results from the dependence of fluid density and viscosity
on temperature. An example (thermal channeling in
packed bed reactors) is given, again, by Hein [30].
Membrane reactors, the combination of forced and free
convection, and adsorber design could be further fields
of interest. While remarks on the possible impact of
flow maldistribution on the breakthrough behaviour of
adsorbers exist in literature (e.g., [31, 32]) more thorough
theoretical and experimental investigation is necessary.

The restriction of the present paper to nearly spheri-
cal particles will be relaxed in a separate communication.
More experimental data with liquids are necessary, espe-
cially in the context of biotechnological applications.

7. CONCLUSION

Starting point of the present work has been a wall heat
conduction model (Λr(r)-model) published recently by
Winterberg et al. [11]. In this quasihomogeneous mod-
elling approach for transport phenomena in packed beds,
porosity, flow velocity and effective thermal conductivity
are considered to be functions of the lateral space coor-
dinate, i.e. of the distance from the wall. The model has
been confronted with a comprehensive collection of ex-
perimental heat transfer data from literature, covering a
range of Reynolds numbers,Re0, between 1.5 and 1 818,
of mean particle diameters,dp, between 0.6 mm to 20 mm
and of quotients between lateral bed dimension and par-
ticle diameter between 4.7 and 101.3. Experiments with
different bed geometries (slab, annular channel, circu-
lar tube) and with different thermal boundary conditions
at the wall or walls (constant temperature, constant heat
flux, adiabatic) have been reevaluated. Very satisfactory
agreement between model predictions and experimental
results underlines the invariability of model parameters
upon bed geometry and thermal boundary condition and
the applicability of theΛr(r)-approach to a broad variety
of practical situations. Remaining restrictions concern the
particle shape (spherical) and the type of the fluid (only
few data available for liquids).

Furthermore, systematic comparison between the
Λr(r)- and theαw-model after Martin and Nilles [19]
has been carried out on the basis of the experimental data.
In theαw-model a temperature jump is postulated at the
wall, while evenly distributed porosity, flow and conduc-
tivity are assumed. The comparison reveals good overall
accuracy of theαw-model, but still better predictive per-
formance of theΛr(r)-model. This, conceptual aspects,
as well as better possibilities for considering temperature-
dependent properties and simulating complex processes
like reaction and adsorption justify the recommendation
of theΛr(r)-model for practical use.
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APPENDIX

Equations and parameters of the
Λr(r)-model after Winterberg et al. [11]

1. Circular tube

Energy balance:

1

r

∂

∂r

[
Λr(r)r

∂T

∂r

]
= u0(r)ρfcf

∂T

∂z
−Λax(r)∂

2T

∂z2

(A.1)
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Porosity profile:

ψ(r)=ψ∞
(

1+ 1.36exp

[
−5.0

R − r
dp

])
(A.2)

Velocity profile (extended Brinkman equation):

∂p

∂z
=−f1u0(r)− f2

[
u0(r)

]2+ ηeff

r

∂

∂r

(
r
∂u0

∂r

)
(A.3)

with the effective viscosity

ηeff

ηf
= 2.0 exp

(
2.0·10−3Re0

)
(A.4)

the D’Arcy and Forchheimer factors

f1= 150
(1−ψ(r))2
[ψ(r)]3

ηf

d2
p

and

(A.5)

f2= 1.75
(1−ψ(r))
[ψ(r)]3

ρf

dp

and the boundary conditions

r = 0−→ ∂u0

∂r
= 0

r =R −→ u0= 0

Effective axial thermal conductivity:

Λax(r)= λbed(r)+ Pe0

2
λf (A.6)

with the molecular Péclet number for heat transfer

Pe0= ū0dpρfcf

λf
(A.7)

The effective thermal conductivity of the packed bed
without fluid flow,λbed, is calculated from a correlation
provided by Zehner and Schlünder [17] as a function of
the local porosityψ(r).

Effective radial thermal conductivity:

Λr(r)= λbed(r)+K1Pe0
uc

ū0
f (R − r)λf (A.8)

with

f (R − r)=


(
R − r
K2dp

)2

for 0≤R − r ≤K2dp

1 forK2dp<R − r ≤R
(A.9)

and

K1= 1

8
(A.10)

K2= 0.44+ 4 exp

(
−Pe0

50

)
(A.11)

2. Annular channel

Energy balance: equation (A.1).

Porosity profile:

ψ(r)=



ψ∞
(

1+ 1.36exp

[
−5.0

r − rcyl

dp

])
for rcyl ≤ r ≤ R+ rcyl

2

ψ∞
(

1+ 1.36exp

[
−5.0

R − r
dp

])
for

R+ rcyl

2
< r ≤R

(A.12)

Velocity profile: equations (A.3)–(A.4) with the
boundary conditions

r = rcyl −→ u0= 0

r =R −→ u0= 0

Effective axial thermal conductivity: equation (A.6).

Effective radial thermal conductivity: equation (A.8)
with

f (R − r)=



(
R− r
K2dp

)2

for 0≤R − r ≤K2dp

1 forK2dp<R − r ≤R− rcyl −K2dp(
r − rcyl

K2dp

)2

for R− rcyl−K2dp<R− r≤R− rcyl

(A.13)

andK1 andK2 after equations (A.10) and (A.11).

3. Slab

Energy balance:

∂

∂x

[
Λx(x)

∂T

∂x

]
= u0(x)ρfcf

∂T

∂z
−Λax(x)

∂2T

∂z2 (A.14)
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Porosity profile:

ψ(r)=



ψ∞
(

1+ 1.36exp

[
−5.0

x

dp

])
for 0≤ x ≤ B

2

ψ∞
(

1+ 1.36exp

[
−5.0

B − x
dp

])
for

B

2
< x ≤ B

(A.15)

Velocity profile:

∂p

∂z
=−f1u0(x)− f2

[
u0(x)

]2+ ηeff
∂2u0

∂x2 (A.16)

with the effective viscosity after equation (A.4) andf1,
f2 after equations (A.5). The boundary conditions are

x = 0−→ u0= 0

x = B −→ u0= 0

Effective axial thermal conductivity: equation (A.6)
with x instead ofr.

Effective lateral thermal conductivity:

Λx(x)= λbed(x)+K1Pe0
uc

ū0
f (x)λf (A.17)

with

f (x)=



(
x

K2dp

)2

for 0≤ x ≤K2dp

1 for K2dp< x ≤ B −K2dp(
B − x
K2dp

)2

for B −K2dp< x ≤ B
(A.18)

andK1 andK2 after equations (A.10) and (A.11).
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